Energy Conservation in Air Compressors & Compressed Air System

1r

Life Cycle Cost For A Compressor

□ Initial Cost 5%

□ Maintenance cost 5%

□ Energy Cost 90%

Energy Cost!!

What is the operating cost/annum of a 500 cfm comp capacity?

kW/100 cfm x Capacity of Comp (in CFM) x (operating Hrs/yr) x Unit Cost (Rs./kWh)

Benchmark – 15-17 kW/100 cfm Rs. 37.5 Lakhs @ Rs. 5.0/unit

Energy Balance for Air Compressor System

Approximately 10% gets to the point of use!!

Compressed Air Energy Input and Useful Energy Output

A Simplified Block Diagram

Applications

- OgProcess air
- **Operating pneumatic instruments**
- **OB** Actuators
- **Gamma Transportation of materials**
- ত্যে Drying
- **G** Agitation
- **G** Cleaning
- **Mitrogen generation**
- ය Cooling
- Image: ColorPress filters

Positive Displacement Air Compressors

Single Acting, 2-Stage Reciprocating Compressor

Why Inter-cooler?

Compressed air leaves at high temp.

- Density is lower
- > Volumetric η decreases
- Inter-cooling reduces temperature & volume
 - > Mass of air delivered increases
- Inter-cooler generally saves 7 %

Why After-cooler? How much is the energy savings?

Savings same as inter cooler - 7 %

Higher than inter cooler

Why After-Cooler? How much is the energy savings?

At higher temperature moisture carry over very high

Condensed water moves with same velocity of air

Damage to instrument valves

> Makes instruments sluggish

After-cooler saves energy only when air dryers are installed

Methodology for Energy Audit

- Is the correct type and size of compressor being used?
- Is the system efficient?
- What is the required operating pressure?
- What is pressure drop between user and compressor?
- Is correct type of dryer used?

Methodology for Energy Audit

- Is compressor cooling water monitored?
- Are auto drain valves provided?
- Can compressed air be substituted?
- Are valves provided at the user points?

Efficient operation of compressed air system

Location of air compressors

Cold air intake – Leads to more efficient compression
Every 4°C reduction in inlet air temperature

results in 1% reduction in power consumption

> Dust free air intake – Results in less maintenance

Every 250 mm WC pressure drop across the inlet filter – Compressor power consumption increase by 2%

Efficient operation of compressed air system

Location of air compressors

Dry air intake – Vapour also get compressed and drained out in dryers

Elevation (Height from sea level)
 Impact on volumetric efficiency

Compressor located at higher altitudes consume more power

Air Compressor Running Pattern

Optimal Utilisation of Compressors

<u>Background</u>

*110 kW compressor in operation*At present loading - 50%
Unloading - 50%

<u>Power consumption</u> Unload – 40 kW Loading – 115 kW

Optimal Utilisation of Compressors

- Install correct size air compressor
- Saves no-load power
- Use existing compressor as stand-by

Annual Savings- Rs.12.0 LakhsInvestment- Rs.8.0 LakhsPayback period- 9 months

Manage Available Facility Optimally

Interconnect the two receivers

Stop Brine compressor

Annual Savings Investment Payback period : Rs. 4.28 lakhs : Rs.0.02 : < 1 month

Utilise the Correct Type of Compressor

- Sattery of screw & reciprocating compressors 200 kW capacity
 - > 2 Screw Compressors
 - □ One 100% Load
 - □ Second 40% Load
 - Reciprocating compressor stand by

Screw compressor operation

- > Load power = 180 kW (40%)
- > Unload power = 60 kW (60 %)

Utilise the Correct Type of Compressor

Reciprocating Compressor Operation

- > Load power = 165 kW (40%)
- > Unload power = 25 kW (60%)
- Operate Reciprocating
 Compressor on continuous basis
 - > Keep Screw as stand by

Annual Savings = Rs. 4.90 Lakhs

Pressure setting

Compressor operates within a pressure range

- Loading and unloading of compressor
 - Loading compressor operate and deliver air
 - Unloading- Compressor operate and does not deliver air
- Control by a pressure switch

Power consumption of air compressor increases with higher operating pressure

Pressure setting

Consequences of higher pressure setting

- > Wastage of power
- Leads to excessive wear
- Less volumetric efficiency

Seneration pressure of the air compressor should be optimally set

Reduction of generation pressure by 1 bar would reduce the power consumption by 6-10%

Air Compressor power consumption @ 7.1 kg/cm2 pressure

Comp Number	Capacity (cfm)	Power Consumption
2	167	32
4	407	81
5	433	79
6	398	82
7	407	80
9	433	80
Total		434 kW

Air compressor power consumption @ 6.8 kg/cm2 pressure

Comp Number	Rated Capacity (cfm)	Power Consumption
4	407	77
5	433	75
6	398	62
7	407	77
9	433	80
Total		371

CII appreciates plant team for quick action

Change over done after detailed discussion & analysis

Results were continuously monitored for 4 days

Results were monitored only for shift A & B as operation in shift C is very dynamic as production operation is varying

Present System – 3 compressors in operation

- ZR Comp 1500 cfm (240 kW, 90 kW)
- GA Comp 1000 cfm (180 kW, 70 kW)
- ➢ GA Comp 525 cfm (85 kW, 30 kW)

- Present layout –
- One of the good distribution system
- Compressor located at two ends
- Results in uniform distribution of air
- Pressure even at farthest end reaches well

- Present operation —
- GA Comp: 525 cfm comp: running on base load
 GA Comp: 1000 cfm: also running on base load
 ZR Comp: 1500 cfm: running on fluctuating load

- Present operating pressure —
- ZR Comp: 1500 cfm: 6.3 kg/cm² unloading & 5.8 kg/cm² loading
- \blacktriangleright GA Comp: 525 cfm: pressure higher than 6.3 kg/cm²
- ➢ GA Comp: 1000 cfm: pressure higher than 6.3 kg/cm²
- Average operating pressure higher than 6.3 kg/cm2
- GA 1000 cfm & 525 cfm higher av. Power
- unloading of bigger comp (1500) consumes higher power without any useful work

- After fine tuning & modifications –
- ZR Comp: 1500 cfm: 6.3 kg/cm²— unloading & 5.8 kg/cm² loading
- SA Comp: 525 cfm: 5.8 kg/cm² 5.4 kg/cm² \sim
- SA Comp: 1000 cfm: 6.0 kg/cm² 5.5 kg/cm² 2
- Average operating pressure: 5.8 6.0 kg/cm² at the receiver at generation end
- Average pressure at user end receiver: $5.5 5.0 \text{ kg/cm}^2$
- ZR 1500: operated at base load

Results: Shift A

Average unit consumption in May (Except Sunday & 2 nd Sat.	4337 units
Average unit consumption in June (9 days)	4628 units
Average unit consumption after modifications (2 days)	3816 units

Results: Shift B

Average unit consumption in May (Except Sunday & 2 nd Sat.)	3898 units
Average unit consumption in June (9 days)	3884 units
Average unit consumption after modifications (2 days)	3200 units

Results: Comparison Shift – A

Savings as compared to last month -May	4337 – 3816 units = 521 units
Average unit consumption in June (9 days)	4628 – 3816 units = 812 units
Minimum savings after modifications	500 units/shift A

Results: Comparison Shift – B

Savings as compared to last month -May	3898 – 3200 units = 698 units
Average unit consumption in June (9 days)	3884 – 3200 units = 684 units
Minimum savings after modifications	650 units/shift B

Results: Total Savings

Per day savings	500 + 650 = 1150 units
Per year savings @ 300 days	1150 units x 300 = 345000 units
Annual savings @ Rs. 7.5/unit	Rs. 26.0 Lakhs

Annual Savings	-	Rs 26.0 Lakhs
Investment	-	Nil

This proposal has been successful implemented – results are being monitored regularly

Replacing spring loaded pressure switches with digital pressure is recommended to further fine tune control of generation pressure

Capacity Test

Capacity Test (Pumping Method)

Average Compressor Delivery =

$$\frac{\mathbf{P}_2 - \mathbf{P}_1}{\mathbf{P}} \cdot \mathbf{V}_{\mathbf{R}} \cdot \frac{\mathbf{1}}{\Delta t}$$

- $P_1 =$ Initial pressure in receiver
- P_2 = Final pressure in receiver
- **P** = Atmospheric pressure
- **V_R = Volume of air in receiver**
- $\Delta t = Time taken for charging receiver & from P₁ to P₂$

Compressor No. 5, 75 kW – power consumption at different generation pressure

Capacity Test Compressor 5

Replacement of Inefficient Compressors

- Compressor For Instrumentation and Process air
- Design Specifications
 - Capacity (FAD) = 540 cfm
 - > Pressure (Average) = 6 kg/cm2
 - > Motor = 90 kW
- Syear Old Compressor
 - Regular Maintenance Conducted
 - > Overhauling done

Replacement of Inefficient Compressors

Capacity Test Conducted

- > Actual volume (FAD) = 430 cfm
- \succ Power measured = 86 kW
- > Specific Power = 20 kW/100 cfm
- Specific power consumption for reciprocation compressor should be around 15 - 16 kW/100 cfm

Replacement of Inefficient Compressors

- Excess power consumption 5 kW/100 cfm
- Replaced with New Reciprocating Compressor

Annual savings	= Rs. 9.0 Lakhs
Investment	= Rs.10.00 Lakhs
Payback period	= 14 months

VFD - Concept

Advantages

Operates at Lower Avg. Pressure Proportional Savings

- No Unloading
- ✤ Less Leakages➢ Lower Pressure

Setter Motor Efficiency

Concept - Conventional Control

Concept - VFD Control

Savings in Unload Power

- Compressors Designed to meet Fluctuating Load
- Fluctuating Load Leads to Load / Unload
- Lean Time Unload
- Unload power 15 40%
- No useful work
- VSD Avoids Unloading of Compressors

Case Study

Install VFD for One Compressor

VFD For One Compressor
Constant Pressure of 6.0 ksc
4% Savings in all compressors

Annual Savings= Rs.12.00 LakhsInvestment= Rs. 12.00 LakhsPayback period= 12 Months

- Present System 5 compressors installed in the plant
 - ≻ Comp 1 204 cfm
 - ≻ Comp 3 735 cfm
 - ≻ Comp 4 735 cfm
 - ≻ Comp 5 900 cfm
 - Comp 6 850 cfm (new comp with VSD)

- Present Operation- 2 compressors running
- Case I (at average load)
 - ≻ Comp 1 204 cfm
 - Comp 6 850 cfm (new comp with VSD)
- Case II (at higher load)
 - Comp 5 900 cfm
 - Comp 6 850 cfm (new comp with VSD)

Present Demand Pattern –

- Base load around 800 cfm
- Average load around 1000 cfm
- Peak load around 1100 1200 cfm

During base load & average load –

- Comp 1 & Comp 6 in operation
- Comp 1: 200 cfm
- Comp 6: 850 cfm
- Both compressor runs at full load
- supply = demand
- Best system

* During peak load & average load – 1100 – 1200 cfm

- Comp 1 & Comp 6 in operation
- Comp 5: 900 cfm
- > Comp 6: 850 cfm
- Compressor no 5: runs at full load
- Comp no 6: runs at part load (800-900 rpm)

During base load & average load

Lowest unit consumption in July	2900 units
Lowest unit consumption in Aug (12 days)	3000 units

✤ During peak load & average load – 1100 cfm – 1200 cfm

Peak unit consumption in July	4180 units
Average unit consumption in Aug (12 days)	3900 units

What should be my bench mark?

- Install new compressor of 400 cfm with VFD
- > Operate Comp 6: 850 cfm on base load
- Operate New Comp: on variable load

Bench mark -2500 – 2700 units/day

Annual Savings	 Rs 10.0 Lakhs
Investment	 Rs. 7.0 Lakhs
Simple Payback	 9 months

Compressor Layout

Loop header most efficient

- Pressure losses are lesser
- > Easier to add/delete user points

Compressor Layout

Pressure drops in lines

* Excessive pressure loss in lines leads to power loss

TYPICAL ENERGY WASTAGE DUE TO SMALLER PIPE DIAMETER FOR 100 CFM FLOW			
Pipe nominal Bore (mm)	Pressure drop (bar) per 100 meters	Equivalent power losses (kW)	
40	1.8	9.5	
50	0.65	3.4	
65	0.22	1.2	
80	0.04	0.2	
100	0.02	0.1	

* Acceptable pressure drop:

✓ 0.3 bar in main header at farthest point

✓ 0.5 bar in distribution system

Minimise Leakages

Common in all industries

Tricky

Quantification

Quantification

Allow compressor to run normally

* Allow compressed air to flow in the system

Close all the user points

A Measure the loading and unloading time

* % of loading time is % of leakages

Leakage Test

Close all the user points & Charge all the lines

Note the Load time of compressor (T)

and

Unload time of compressor (t)

* % air leakage (L) = [T/ (T + t)] x 100

Qty. of leakages = L x Compressor Capacity (Q)

Cost Of Leakage At 7kg/cm²

Orifice dia (mm)	Air Leakage (cfm)	Power Wasted (kW)	Annual Savings @ Rs.5.0/kWh.	
1.6	6.5	1.26	Rs.65,000	
3.2	26.0	5.04	Rs.2,00,000	
6.4	104.0	20.19	Rs.6,25,000	

Replace Compressed Air with Blower Air for Agitation in ETP

- *** ETP Agitation Very Important**
- Compressed air used in several industries
 - > Highly energy intensive
- ✤ 7 ksc pressure utilised for 8' depth tank
 - Required pressure 0.5 ksc only
 - > Quantity consumed 120 cfm

For Agitation - Quantity is Criteria, Not Pressure!!

Replace Pneumatic Tools With Electric Tools

<u>Background</u>

Compressed air costlier
 Theoretically - 25% more
 In practice much more than that
 40 pneumatic grinders in a plant

<u>Action</u>

Replaced 40 pneumatic grinders

Annual Savings- Rs. 6.50 lakhsInvestment- Rs. 11.00 lakhsPayback period- 21 months

Use Transvector Nozzle In Air Hose

Sucks atmospheric air along with air jet

Reduces air consumption by 50%

Compressed air used for cleaning the burrs

Provided transvector nozzles at the end users

Annual Savings- Rs. 0.48 LakhsInvestment- Rs.0.25 LakhsPayback period- 6 months

Why Air Dryer?

> Water carryover damaging instruments

Possible corrosion of receiver and air lines

© Confederation of Indian Industry

Comparison of Air Dryers

Type of Dryer (cfm)	Capital Cost	Running Cost	Atmospheric Dew Point oC	Pressure Drop	Best Suitable for
Dessicant Heatless	Low	High	-40	Medium	150
Dessicant Heated	High	Medium	-40	High	100-750
Dessicant HOC	High	Very Low	-40	High	>500
Refrigeration Dryer	Medium	Low	-20	Low	100

List Of Energy Saving Ideas In Compressed Air System

- Select correct size air compressor
- Operate compressor at required pressure
- > Install VFD
- Minimise system losses Proper line sizing
- Replace compressed air with blower air for agitation
- Replace pneumatic tools with electric tools

List Of Energy Saving Ideas In Compressed Air System

- Provide ball valves at the user point to avoid compressed air wastage
- Use transvector nozzles in air hoses
- > Cool inlet air to the compressor
- Provide sensors to sense unloading and switch off
- > Replace inefficient compressors
- > Install high efficiency dryers

© Confederation of Indian Industry

The Challenge

Reduce energy consumed by compressed air system in your plant by 20 - 50%

> provide a more reliable and stable platform of supply to all users - and most specifically to the critical users

> This must be accomplished at a reasonable cost with a less than two year pay back or less.

Thank you Manpreet.singh@cii.in

09876724003

© Confederation of Indian Industry